Compressing parameters in Bayesian high-order models with application to logistic sequence models

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressing Parameters in Bayesian High-order Models with Application to Logistic Sequence Models∗

Abstract. Bayesian classification and regression with high-order interactions is largely infeasible because Markov chain Monte Carlo (MCMC) would need to be applied with a great many parameters, whose number increases rapidly with the order. In this paper we show how to make it feasible by effectively reducing the number of parameters, exploiting the fact that many interactions have the same va...

متن کامل

N ov 2 00 7 A Method for Compressing Parameters in Bayesian Models with Application to Logistic Sequence Prediction Models

Abstract. Bayesian classification and regression with high order interactions is largely infeasible because Markov chain Monte Carlo (MCMC) would need to be applied with a great many parameters, whose number increases rapidly with the order. In this paper we show how to make it feasible by effectively reducing the number of parameters, exploiting the fact that many interactions have the same va...

متن کامل

Objective Bayesian higher-order asymptotics in models with nuisance parameters

We discuss higher-order approximations to the marginal posterior distribution for a scalar parameter of interest in the presence of nuisance parameters. These higher-order approximations are obtained using a suitable matching prior. The proposed procedure has several advantages since it does not require the elicitation on the nuisance parameter, neither numerical integration or MCMC simulation,...

متن کامل

Bayesian inference on order-constrained parameters in generalized linear models.

In biomedical studies, there is often interest in assessing the association between one or more ordered categorical predictors and an outcome variable, adjusting for covariates. For a k-level predictor, one typically uses either a k-1 degree of freedom (df) test or a single df trend test, which requires scores for the different levels of the predictor. In the absence of knowledge of a parametri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bayesian Analysis

سال: 2008

ISSN: 1936-0975

DOI: 10.1214/08-ba330